
Kubernetes

Stupid Simple

by Zoltán Czakó

2Stupid Simple Kubernetes

Welcome to Stupid Simple Kubernetes

In software development, the single constant is that everything

changes fast. Good developers are always prepared for

change: the framework you’re working on today could be

outdated in a few months. One way to prepare for change is

to create loosely coupled, independent components that can

be easily replaced.

As software and tools change, so do application architectures.

Recently we’ve witnessed an evolution from traditional

monolithic architecture, where all components of the

application are packed as a single atonomous unit, to

service-oriented architecture, to today’s microservices

architecture.

Microservices architectures have sprung up because of

changes in tools, programming languages and development

environments. To keep up with new technologies, you need a

way to add new, independent components at any time. These

components must be free to use whatever technology they like,

so they can be built using different programming languages

and frameworks, databases or even communication protocols.

In this e-book, we will show you how to build a stable, easily

manageable, highly available microservices architecture. In

the first part, we will introduce Kubernetes, its components and

building blocks. Then, we will build a small sample application

based on a microservices architecture. We’ll define the

Kubernetes scripts to create the Deployments, Services,

Ingress Controllers and Persistent Volumes and then deploy

this ecosystem in Azure Cloud.

In the second part of this book, we will dive into scalability

and we will define different Kubernetes configuration files for

Horizontal and Vertical Pod Autoscaling and also for Cluster

Autoscaling.

In the last part of the book, we will present different solutions

for easily handling all the cross-cutting concerns that we

presented when using Service Meshes. We’ll build our own

Service Mesh using Envoy proxies and then use Istio to handle

all these concerns automatically.

Ready to get started with Kubernetes? Let’s go.

3Stupid Simple Kubernetes

Chapter 1

Everything You Need to Know to
Start Using Kubernetes

4

Chapter 2

Deployments, Services and
Ingresses Explained

14

Chapter 3

Persistent Volumes Explained 25

Chapter 6

Stupid Simple Scability 50

Chapter 7

Stupid Simple Service Mesh -
What, When, Why

57

Chapter 8

Stupid Simple Service Mesh
in Kubernetes

66

Chapter 4

Device Plugins Explained 36

Chapter 5

Create an Azure Infrastructure
for Microservices

40

Conclusion

Become a Microservices Master 77

Everything You Need
to Know to Start
Using Kubernetes

Chapter 1

5Stupid Simple Kubernetes

In the era of Microservices, Cloud Computing and Serverless
architecture, it’s useful to understand Kubernetes and learn
how to use it. However, the official Kubernetes documentation
can be hard to decipher, especially for newcomers. In this
book, I will present a simplified view of Kubernetes and give
examples of how to use it for deploying microservices using
different cloud providers, including Azure, Amazon, Google
Cloud and even IBM.

In this first chapter, we’ll talk about the most important

concepts used in Kubernetes. Later in the book, we’ll learn how

to write configuration files, use Helm as a package manager,

create a cloud infrastructure, easily orchestrate our services

using Kubernetes and create a CI/CD pipeline to automate

the whole workflow. With this information, you can spin up any

kind of project and create a solid infrastructure/architecture.

First, I’d like to mention that using containers has multiple

benefits, from increased deployment velocity to delivery

consistency with a greater horizontal scale. Even so, you should

not use containers for everything because just putting any part

of your application in a container comes with overhead, like

maintaining a container orchestration layer. So, don’t jump to

conclusions. Instead, create a cost/benefit analysis at the start

of the project.

Now, let’s start our journey in the world of Kubernetes.

https://helm.sh/docs/topics/charts/

6Stupid Simple Kubernetes

Kubernetes
Hardware Structure

Nodes are worker machines in Kubernetes, which can be any

device that has CPU and RAM. For example, a node can be

anything, from a smartwatch, smartphone, or laptop to a

Raspberry Pi. When we work with cloud providers, a node is a

virtual machine (VM). So, a node is an abstraction over a single

device.

As you will see in the next chapter, the beauty of this abstraction

is that we don’t need to know the underlying hardware

structure. We will just use nodes; this way, our infrastructure is

platform independent.

Nodes

A cluster is a group of nodes. When you deploy programs onto

the cluster, it automatically handles the distribution of work

to the individual nodes. If more resources are required (for

example, we need more memory), new nodes can be added

to the cluster, and the work will be redistributed automatically.

We run our code on a cluster, and we shouldn’t care about

which node. The distribution of the workw is automatic.

Cluster

https://kubernetes.io/docs/concepts/architecture/nodes/
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-cluster

7Stupid Simple Kubernetes

Because our code can be relocated from one node to another

(for example, a node doesn’t have enough memory, so the

work is rescheduled on a different node with enough memory),

data saved on a node is volatile. But there are cases when

we want to save our data persistently. In this case, we should

use Persistent Volumes. A persistent volume is like an external

hard drive; you can plug it in and save your data on it.

Google developed Kubernetes as a platform for stateless

applications with persistent data stored elsewhere. As the

project matured, many organizations wanted to leverage it for

their stateful applications, so the developers added persistent

volume management. Much like the early days of virtualization,

database servers are not typically the first group of servers to

move into this new architecture. That’s because the database

is the core of many applications and may contain valuable

information, so on-premises database systems still largely run

in VMs or physical servers.

So, the question is, when should we use Persistent Volumes? To

answer that question, first, we should understand the different

types of database applications.

Persistent Volumes We can classify the data management solutions into

two classes:

1. Vertically scalable — includes traditional RDMS solutions

such as MySQL, PostgreSQL and SQL Server

2. Horizontally scalable — includes “NoSQL” solutions such as

ElasticSearch or Hadoop-based solutions

Vertical scalable solutions like MySQL, Postgres and Microsoft

SQL should not go in containers. These database platforms

require high I/O, shared disks, block storage, etc., and do not

(by design) handle the loss of a node in a cluster gracefully,

which often happens in a container-based ecosystem.

For horizontally scalable applications (Elastic, Cassandra,

Kafka, etc.), use containers. They can withstand the loss of a

node in the database cluster, and the database application

can independently rebalance.

Usually, you can and should containerize distributed

databases that use redundant storage techniques and can

withstand a node’s loss in the database cluster (ElasticSearch

is a good example).

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://www.elastic.co/elasticsearch/

8Stupid Simple Kubernetes

Kubernetes
Software Components

One of the goals of modern software development is to keep

applications on the same host or cluster isolated. Virtual

machines are one solution to this problem. But virtual machines

require their own OS, so they are typically gigabytes in size.

Containers, by contrast, isolate application execution

environments from one another but share the underlying OS

kernel. So, a container is like a box where we store everything

needed to run an application: code, runtime, system tools,

system libraries, settings, etc. They’re typically measured in

megabytes, use far fewer resources than VMs and start up

almost immediately.

Container

A pod is a group of containers. In Kubernetes, the smallest unit

of work is a pod. A pod can contain multiples containers, but

usually, we use one container per pod because the replication

unit in Kubernetes is the pod. If we want to scale each container

independently, we add one container in a pod.

Pods

https://www.docker.com/resources/what-container
https://kubernetes.io/docs/concepts/workloads/pods/pod/

9Stupid Simple Kubernetes

The primary role of deployment is to provide declarative

updates to both the pod and the ReplicaSet (a set in which the

same pod is replicated multiple times). Using the deployment,

we can specify how many replicas of the same pod should be

running at any time. The deployment is like a manager for the

pods; it automatically spins up the number of pods requested,

monitors the pods and recreates the pods in case of failure.

Deployments are helpful because you don’t have to create

and manage each pod separately.

Deployments

A DaemonSet ensures that the pod runs on all the nodes

of the cluster. If a node is added/removed from a cluster,

DaemonSet automatically adds/deletes the pod. This is useful

for monitoring and logging because you can monitor every

node and don’t have to monitor the cluster manually.

DaemonSets

StatefulSet is a new concept in Kubernetes, and it is a resource

used to manage stateful applications. It manages the

deployment and scaling of a set of pods and guarantees these

pods’ ordering and uniqueness. It is similar to deployment;

the only difference is that the deployment creates a set of

pods with random pod names and the order of the pods

is not important, while the StatefulSet creates pods with a

unique naming convention and order. So, if you want to create

three replicas of a pod called example, the StatefulSet will

create pods with the following names: example-0, example-1,

example-2. In this case, the most important benefit is that you

can rely on the name of the pods.

Stateful Sets

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

10Stupid Simple Kubernetes

While deployment is responsible for keeping a set of pods

running, the service is responsible for enabling network

access to a set of pods. Services provide standardized features

across the cluster: load balancing, service discovery between

applications and zero-downtime application deployments.

Each service has a unique IP address and a DNS hostname.

Applications that consume a service can be manually

configured to use either the IP address or the hostname and

the traffic will be load balanced to the correct pods. In the

External Traffic section, we will learn more about the service

types and how we can communicate between our internal

services and the external world.

Services

If you want to deploy to multiple environments, like staging,

dev and prod, it’s a bad practice to bake the configs into the

application because of environmental differences. Ideally,

you’ll want to separate configurations to match the deploy

environment. This is where ConfigMap comes into play.
ConfigMaps allow you to decouple configuration artifacts

from image content to keep containerized applications

portable.

ConfigMaps

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/configmap/

11Stupid Simple Kubernetes

External Traffic

Now that you’ve got the services running in your cluster, how

do you get external traffic into your cluster? There are three

different service types for handling external traffic: ClusterIP,

NodePort and LoadBalancer. The 4th solution is to add another

layer of abstraction, called Ingress Controller.

ClusterIP is the default service type in Kubernetes and lets you

communicate with other services inside your cluster. While

ClusterIP is not meant for external access, with a little hack

using a proxy, external traffic can hit our service. Don’t use

this solution in production, but only for debugging. Services
declared as ClusterIP should NOT be directly visible from the

outside.

ClusterIP

As we saw in the first part of this chapter, pods are running on

nodes. Nodes can be different devices, like laptops or virtual

machines (when working in the cloud). Each node has a fixed

IP address. By declaring a service as NodePort, the service

will expose the node’s IP address so that you can access it

from the outside. You can use NodePort in production, but for

large applications, where you have many services, manually

managing all the different IP addresses can be cumbersome.

NodePort

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

12Stupid Simple Kubernetes

Declaring a service of type LoadBalancer exposes it externally

using a cloud provider’s load balancer. How the external load

balancer routes traffic to the Service pods depends on the

cluster provider. With this solution, you don’t have to manage

all the IP addresses of every node of the cluster, but you will

have one load balancer per service. The downside is that every

service has a separate load balancer and you will be billed per

load balancer instance.

This solution is good for production, but it can be a little bit

expensive. Let’s look at a less expensive solution.

LoadBalancer

Ingress is not a service but an API object that manages external

access to a cluster’s services. It acts as a reverse proxy and
single entry-point to your cluster that routes the request

to different services. I usually use NGINX Ingress Controller,

which takes on reverse proxy while also functioning as SSL. The

best production-ready solution to expose the ingress is to use

a load balancer.

With this solution, you can expose any number of services

using a single load balancer, so you can keep your bills as low

as possible.

Ingress

https://kubernetes.io/docs/concepts/services-networking/
https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-ingress-guide-nginx-example.html
https://www.youtube.com/watch?v=ozhe__GdWC8
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm

13Stupid Simple Kubernetes

In this chapter, we learned about the basic concepts used in

Kubernetes and its hardware structure. We also discussed the

different software components including Pods, Deployments,

StatefulSets and Services, and saw how to communicate

between services and with the outside world.

In the next chapter, we’ll set up a cluster on Azure and create

an infrastructure with a LoadBalancer, an Ingress Controller

and two Services and use two Deployments to spin up three

Pods per Service.

Next Steps

Deployments,
Services and
Ingresses Explained

Chapter 2

15Stupid Simple Kubernetes

In the first chapter, we learned about the basic concepts

used in Kubernetes, its hardware structure, the different

software components like Pods, Deployments, StatefulSets,

Services, Ingresses and Persistent Volumes and saw how to

communicate between services and with the outside world.

In this chapter, we will:

• Create a NodeJS backend with a MongoDB database

• Write the Dockerfile to containerize our application

• Create the Kubernetes Deployment scripts to spin up the

Pods

• Create the Kubernetes Service scripts to define the

communication interface between the containers and the

outside world

• Deploy an Ingress Controller for request routing

• Write the Kubernetes Ingress scripts to define the

communication with the outside world.

Because our code can be relocated from one node to another

(for example, a node doesn’t have enough memory, so the

work will be rescheduled on a different node with enough

memory), data saved on a node is volatile (so our MongoDB

data will be volatile, too). In the next chapter, we will talk about

the problem of data persistence and how to use Kubernetes

Persistent Volumes to safely store our persistent data.

In this tutorial, we will use NGINX as an Ingress Controller

and Azure Container Registry to store our custom Docker

https://auth0.com/
https://azure.microsoft.com/en-us/services/container-registry/

16Stupid Simple Kubernetes

images. All the scripts written in this book can be found in my

StupidSimpleKubernetes git repository. If you like it, please
leave a star!

NOTE: the scripts are platform agnostic, so you can follow the

tutorial using other types of cloud providers or a local cluster

with K3s. I suggest using K3s because it is very lightweight,

packed in a single binary less than 40MB. What’s more, it’s a

highly available, certified Kubernetes distribution designed for

production workloads in resource-constrained environments.

For more information, you can take a look over its well-written

and easy-to-follow documentation.

I would like to recommend another great article about basic

Kubernetes concepts: Explain By Example: Kubernetes.

https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS
https://k3s.io/
https://rancher.com/docs/k3s/latest/en/
https://medium.com/swlh/explain-by-example-kubernetes-ea34c60d22ce

17Stupid Simple Kubernetes

Requirements
Before starting this tutorial, please make sure that you have

installed Docker. Kubectl will be installed with Docker. (If not,

please install it from here).

The Kubectl commands used throughout this tutorial can be

found in the Kubectl Cheat Sheet.

Through this tutorial, we will use Visual Studio Code, but this is

not mandatory.

Creating a
Production-Ready
Microservices
Architecture

Containerize the app

The first step is to create the Docker image of our NodeJS

backend. After creating the image, we will push it in to the

container registry, where it will be accessible and can be pulled

by the Kubernetes service (in this case, Azure Kubernetes

Service or AKS).

In the first line, we need to define from what image we want to

build our backend service. In this case, we will use the official

node image with version 13.10.1 from Docker Hub.

In line 3 we create a directory to hold the application code

inside the image. This will be the working directory for your

application.

This image comes with Node.js and NPM already installed so

the next thing we need to do is to install your app dependencies

using the npm command.

Note that to install the required dependencies, we don’t have

to copy the whole directory, only the package.json, which

allows us to take advantage of cached Docker layers (more

info about efficient Dockerfiles here).

The Docker file for NodeJS:
FROM node:13.10.1
WORKDIR /usr/src/app
COPY package*.json ./
RUN npm install
Bundle app source
COPY . .
EXPOSE 3000
CMD [“node”, “index.js”]

https://docs.docker.com/get-docker/
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://code.visualstudio.com/
https://hub.docker.com/_/node
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/

18Stupid Simple Kubernetes

In line 9 we copy our source code into the working directory and

on line 11 we expose it on port 3000 (you can choose another

port if you want, but make sure to change in the Kubernetes

Service script, too.)

Finally, on line 13 we define the command to run the application

(inside the Docker container). Note that there should only be

one CMD instruction in each Dockerfile. If you include more

than one, only the last will take effect.

Now that we have defined the Dockerfile, we will build an

image from it using the following Docker command (using the

Terminal of the Visual Studio Code or for example using the

CMD on Windows):

docker build -t node-user-service:dev .

Note the little dot from the end of the Docker command,

it means that we are building our image from the current

directory, so please make sure that you are in the same folder,

where the Dockerfile is located (in this case the root folder of

the repository).

docker run -p 3000:3000 node-user-service:dev

To push this image to our Azure Container Registry, we have

to tag it using the following format <container_registry_log-

in_service>/<image_name>:<tag>, so in our case:

docker build -t node-user-service:dev .

The last step is to push it to our container registry using the

following Docker command:

docker push stupidsimplekubernetescontainerregistry.
azurecr.io/node-user-service:dev

To run the image locally, we can use the following command:

19Stupid Simple Kubernetes

Create Pods using
Deployment scripts

NodeJs backend

The next step is to define the Kubernetes Deployment script,

which automatically manages the Pods for us.

piVersion: apps/v1
kind: Deployment
metadata:
 name: node-user-service-deployment
spec:
 selector:
 matchLabels:
 app: node-user-service-pod
 replicas: 3
 template:
 metadata:
 labels:
 app: node-user-service-pod
 spec:
 containers:
 - name: node-user-service-container
 image: stupidsimplekubernetescontainerregistry.
azurecr.io/node-user-service:dev
 resources:
 limits:
 memory: “256Mi”
 cpu: “500m”
 imagePullPolicy: Always
 ports:
 - containerPort: 3000

The Kubernetes API lets you query and manipulates the

state of objects in the Kubernetes Cluster (for example, Pods,

Namespaces, ConfigMaps, etc.). The current stable version of

this API is 1, as we specified in the first line.

In each Kubernetes .yml script we have to define the Kubernetes

resource type (Pods, Deployments, Services, etc.) using the

kind keyword. In this case, in line 2 we defined that we would

like to use the Deployment resource.

Kubernetes lets you add some metadata to your resources.

This way it’s easier to identify, filter and in general to refer to

your resources.

From line 5 we define the specifications of this resource. In line

8 we specified that this Deployment should be applied only to

the resources with the label app:node-user-service-pod and

in line 9 we said that we want to create 3 replicas of the same

pod.

The template (starting from line 10) defines the Pods. Here we

add the label app:node-user-service-pod to each Pod. This

way they will be identified by the Deployment. In lines 16 and 17

we define what kind of Docker Container should be run inside

the pod. As you can see in line 17, we will use the Docker Image

from our Azure Container Registry which was built and pushed

20Stupid Simple Kubernetes

in the previous section.

We can also define the resource limits for the Pods, avoiding

Pod starvation (when a Pod uses all the resources and other

Pods don’t get a chance to use them). Furthermore, when

you specify the resource request for Containers in a Pod, the

scheduler uses this information to decide which node to place

the Pod on. When you specify a resource limit for a Container,

the kubelet enforces those limits so that the running container
is not allowed to use more of that resource than the limit you

set. The kubelet also reserves at least the request amount of

that system resource specifically for that container to use. Be

aware that if you don’t have enough hardware resources (like

CPU or memory), the pod won’t be scheduled -- ever.

The last step is to define the port used for communication. In

this case, we used port 3000. This port number should be the

same as the port number exposed in the Dockerfile.

MongoDB

The Deployment script for the MongoDB database is quite

similar. The only difference is that we have to specify the

volume mounts (the folder on the node where the data will

be saved).

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-db-deployment
spec:
 selector:
 matchLabels:
 app: user-db-app
 replicas: 1
 template:
 metadata:
 labels:
 app: user-db-app
 spec:
 containers:
 - name: mongo
 image: mongo:3.6.4
 command:
 - mongod
 - “--bind_ip_all”
 - “--directoryperdb”
 ports:
 - containerPort: 27017
 volumeMounts:
 - name: data
 mountPath: /data/db
 resources:
 limits:
 memory: “256Mi”
 cpu: “500m”
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: static-persistence-volume-claim-mongo

In this case, we used the official MongoDB image directly from

the DockerHub (line 17). The volume mounts are defined in line

24. The last four lines will be explained in the next chapter when

we will talk about Kubernetes Persistent Volumes.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

21Stupid Simple Kubernetes

Create the Services
for Network Access

Now that we have the Pods up and running, we should

define the communication between the containers and with

the outside world. For this, we need to define a Service. The

relation between a Service and a Deployment is 1-to-1, so for

each Deployment, we should have a Service. The Deployment

manages the lifecycle of the Pods and it is also responsible for

monitoring them, while the Service is responsible for enabling

network access to a set of Pods (as we saw in Chapter One).

apiVersion: v1
kind: Service
metadata:
 name: node-user-service
spec:
 type: ClusterIP
 selector:
 app: node-user-service-pod
 ports:
 - port: 3000
 targetPort: 3000

The important part of this .yml script is the selector, which

defines how to identify the Pods (created by the Deployment)

to which we want to refer from this Service. As you can see

in line 8, the selector is app:node-user-service-pod, because

the Pods from the previously defined Deployment are labeled

like this. Another important thing is to define the mapping

between the container port and the Service port. In this case,

the incoming request will use the 3000 port, defined on line 10

and they will be routed to the port defined in line 11.

The Kubernetes Service script for the MongoDB pods is very

similar. We just have to update the selector and the ports.

apiVersion: v1
kind: Service
metadata:
 name: user-db-service
spec:
 clusterIP: None
 selector:
 app: user-db-app
 ports:
 - port: 27017
 targetPort: 27017

22Stupid Simple Kubernetes

Configure the
External Traffic

To communicate with the outside world, we need to define

an Ingress Controller and specify the routing rules using an

Ingress Kubernetes Resource.

To configure an NGINX Ingress Controller we will use the script

that can be found here.

This is a generic script that can be applied without

modifications (explaining the NGINX Ingress Controller is out

of scope for this book).

The next step is to define the Load Balancer, which will be used

to route external traffic using a public IP address (the cloud

provider provides the load balancer).

kind: Service
apiVersion: v1
metadata:
 name: ingress-nginx
 namespace: ingress-nginx
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
spec:
 externalTrafficPolicy: Local
 type: LoadBalancer
 selector:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 ports:
 - name: http
 port: 80
 targetPort: http
 - name: https
 port: 443
 targetPort: https

https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/blob/master/manifest/ingress-controller/nginx-ingress-controller-deployment.yml

23Stupid Simple Kubernetes

Now that we have the Ingress Controller and the Load Balancer

up and running, we can define the Ingress Kubernetes

Resource for specifying the routing rules.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: node-user-service-ingress
 annotations:
 kubernetes.io/ingress.class: “nginx”
 nginx.ingress.kubernetes.io/rewrite-target: /$2
spec:
 rules:
 - host: stupid-simple-kubernetes.eastus2.cloudapp.
azure.com
 http:
 paths:
 - backend:
 serviceName: node-user-service
 servicePort: 3000
 path: /user-api(/|$)(.*)
 # - backend:
 # serviceName: nestjs-i-consultant-service
 # servicePort: 3001
 # path: /i-consultant-api(/|$)(.*)

In line 6 we define the Ingress Controller type (it’s a Kubernetes

predefined value; Kubernetes as a project currently supports

and maintains GCE and nginx controllers).

In line 7 we define the rewrite target rules (more information

here) and in line 10 we define the hostname.

For each service that should be accessible from the outside

world, we should add an entry in the paths list (starting from

line 13). In this example, we added only one entry for the NodeJS

user service backend, which will be accessible using port 3000.

The /user-api uniquely identifies our service, so any request

that starts with stupid-simple-kubernetes.eastus2.cloudapp.

azure.com/user-api will be routed to this NodeJS backend. If

you want to add other services, then you have to update this

script (as an example see the commented out code).

Apply the .yml scripts

To apply these scripts, we will use the kubectl. The kubectl

command to apply files is the following:

kubectl apply -f <file_name>

So in our case, if you are in the root folder of the

StupidSimpleKubernetes repository, you will write the

following commands:

kubectl apply -f .\manifest\kubernetes\deployment.yml
kubectl apply -f .\manifest\kubernetes\service.yml
kubectl apply -f .\manifest\kubernetes\ingress.yml
kubectl apply -f .\manifest\ingress-controller\nginx-in-
gress-controller-deployment.yml
kubectl apply -f .\manifest\ingress-controller\ng-
nix-load-balancer-setup.yml

After applying these scripts, we will have everything in place, so

we can call our backend from the outside world (for example

by using Postman).

https://git.k8s.io/ingress-gce/README.md
https://git.k8s.io/ingress-nginx/README.md
https://github.com/kubernetes/ingress-nginx/tree/master/docs/examples/rewrite
https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/tree/master/manifest/kubernetes

24Stupid Simple Kubernetes

Conclusion
In this tutorial, we learned how to create different kinds of

resources in Kubernetes, like Pods, Deployments, Services,

Ingresses and Ingress Controller. We created a NodeJS

backend with a MongoDB database and we containerized

and deployed the NodeJS and MongoDB containers using

replication of 3 pods.

In the next chapter, we will approach the problem of saving

data persistently and we will learn about Persistent Volumes

in Kubernetes.

Persistent
Volumes Explained

Chapter 3

NOTE: the scripts provided are platform agnostic, so you can

follow the tutorial using other types of cloud providers or using

a local cluster with K3s. I suggest using K3s because it is very

lightweight, packed in a single binary with a size less than 40MB.

It is also a highly available, certified Kubernetes distribution

designed for production workloads in resource-constrained

environments. For more information, take a look at its

well-written and easy-to-follow documentation.

Welcome back to our series, where we introduce you to the

basic concepts of Kubernetes. In the first chapter, we provided

a brief introduction to Persistent Volumes. Here, we’ll dig into

this topic: we will learn how to set up data persistency and will

write Kubernetes scripts to connect our Pods to a Persistent

Volume. In this example, we will use Azure File Storage to store

the data from our MongoDB database, but you can use any

kind of volume to achieve to same results (such as Azure Disk,

GCE Persistent Disk, AWS Elastic Block Store, etc.)

26Stupid Simple Kubernetes

https://k3s.io/
https://rancher.com/docs/k3s/latest/en/
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore

27Stupid Simple Kubernetes

Requirements

Before starting this tutorial, please make sure that you have

installed Docker. Kubectl will install with Docker (if not, please

install it from here).

The Kubectl commands used throughout this tutorial can be

found in the Kubectl Cheat Sheet.

Through this tutorial, we will use Visual Studio Code, but this is

not mandatory.

What Problem
Does Kubernetes
Volume Solve?

Remember that we have a Node (an actual hardware device

or a virtual machine) and inside the Nodes, we have a Pod (or

multiple Pods) and inside the Pod, we have the Container. Pods

are ephemeral, so they can come and go very often (they can

be deleted, rescheduled, etc.). In this case, if you have data that

you must keep even if the Pod goes down you have to move it

outside the Pod. This way it can exist independently of any Pod.

This external place is called Volume and it is an abstraction of a

storage system. Using the Volume, you can persist state across

multiple Pods.

http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://code.visualstudio.com/

28Stupid Simple Kubernetes

When to Use
Persistent Volumes

When containers became popular, they were designed to

support stateless workloads with persistent data stored

elsewhere. Since then, a lot of effort has been made to support

stateful applications in the container ecosystem.

Every project needs some kind of data persistency, so usually,

you need a database to store the data. But in a clean design,

you don’t want to depend on concrete implementations;

you want to write an application as reusable and platform

independent as possible.

There has always been a need to hide the details of storage

implementation from the applications. But now, in the

era of cloud-native applications, cloud providers create

environments where applications or users who want to access

the data need to integrate with a specific storage system.

For example, many applications are directly using specific

storage systems like Amazon S3, Azure File or Blog storage, etc.

which create an unhealthy dependency. Kubernetes is trying

to change this by creating an abstraction called Persistent

Volume, which allows cloud-native applications to connect

to a wide variety of cloud storage systems without having to

create an explicit dependency with those systems. This can

make the consumption of cloud storage much more seamless

and eliminate integration costs. It can also make it much
easier to migrate between clouds and adopt multi-cloud

strategies.

Even if sometimes, because of material constraints like money,

time or manpower (which are closely related) you have to

make some compromises and directly couple your app with a

specific platform or provider, you should try to avoid as many

direct dependencies as possible. One way of decoupling your

application from the actual database implementation (there

are other solutions, but those solutions require more effort) is

by using containers (and Persistent Volumes to prevent data

loss). This way, your app will rely on abstraction instead of a

specific implementation.

Now the real question is, should we always use a containerized

database with Persistent Volume, or what are the storage

system types which should NOT be used in containers?

There is no golden rule of when you should and shouldn’t use

Persistent Volumes, but as a starting point, you should have in
mind scalability and the handling of the loss of node in the

cluster.

29Stupid Simple Kubernetes

Based on scalability, we can have two types of storage systems:

1. Vertically scalable — includes traditional RDMS solutions

such as MySQL, PostgreSQL and SQL Server

2. Horizontally scalable — includes “NoSQL” solutions such as

ElasticSearch or Hadoop based solution

Vertically scalable solutions like MySQL, Postgres, Microsoft SQL,

etc. should NOT go in containers. These database platforms

require high I/O, shared disks, block storage, etc., and were not

designed to handle the loss of a node in a cluster gracefully,

which often happens in a container-based ecosystem.

For horizontally scalable applications (Elastic, Cassandra,

Kafka, etc.), you should use containers, because they can

withstand the loss of a node in the database cluster and the

database application can independently re-balance.

Usually, you can and should containerize distributed
databases that use redundant storage techniques and

withstand the loss of a node in the database cluster

(ElasticSearch is a really good example).

Types of Kubernetes
Volumes

We can categorize the Kubernetes Volumes based on their

lifecycle and the way they are provisioned.

Considering the lifecycle of the volumes, we can have:

1. Ephemeral Volumes, which are tightly coupled with the

lifetime of the Node (for example emptyDir, or hostPath) and

they are deleted if the Node goes down.

2. Persistent Volumes, which are meant for long-term storage

and are independent of the Pods or Nodes lifecycle.

These can be cloud volumes (like gcePersistentDisk,

awsElasticBlockStore, azureFile or azureDisk), NFS (Network File

Systems) or Persistent Volume Claims (a series of abstraction

to connect to the underlying cloud provided storage volumes).

Based on the way the volumes are provisioned, we can have:

1. Direct access
2. Static provisioning
3. Dynamic provisioning

https://www.elastic.co/elasticsearch/
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azurefile
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#nfs

30Stupid Simple Kubernetes

Direct Access Persistent Volumes

In this case, the pod will be directly coupled with the volume,

so it will know the storage system (for example, the Pod will be

coupled with the Azure Storage Account). This solution is not

cloud-agnostic and it depends on a concrete implementation

and not an abstraction. So if possible, please avoid this solution.

The only advantage is that it is easy and fast. Create the Secret

in the Pod and specify the Secret and the exact storage type

that should be used.

The script for creating a Secret is as follows:

apiVersion: v1
kind: Secret
metadata:
 name: static-persistence-secret
type: Opaque
data:
 azurestorageaccountname: “base64StorageAccountName”
 azurestorageaccountkey: “base64StorageAccountKey”

As in any Kubernetes script, on line 2 we specify the type of the

resource -- in this case, Secret. On line 4, we give it a name (we

called it static because it is manually created by the Admin

and not automatically generated). The Opaque type, from

Kubernetes’ point of view, means that the content (data) of

this Secret is unstructured (it can contain arbitrary key-value

pairs). To learn more about Kubernetes Secrets, see the Secrets

design document and Configure Kubernetes Secrets.

In the data section, we have to specify the account name (in

Azure, it is the name of the Storage Account) and the access

key (in Azure, select the Storage Account under Settings, Access

key). Don’t forget that both should be encoded using Base64.

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/secrets.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/auth/secrets.md
https://kubernetes.io/docs/concepts/configuration/secret/

31Stupid Simple Kubernetes

The next step is to modify our Deployment script to use the

Volume (in this case the volume is the Azure File Storage).

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-db-deployment
spec:
 selector:
 matchLabels:
 app: user-db-app
 replicas: 1
 template:
 metadata:
 labels:
 app: user-db-app
 spec:
 containers:
 - name: mongo
 image: mongo:3.6.4
 command:
 - mongod
 - “--bind_ip_all”
 - “--directoryperdb”
 ports:
 - containerPort: 27017
 volumeMounts:
 - name: data
 mountPath: /data/db
 resources:
 limits:
 memory: “256Mi”
 cpu: “500m”
 volumes:
 - name: data
 azureFile:
 secretName: static-persistence-secret
 shareName: user-mongo-db
 readOnly: false

As you can see, the only difference is that from line 32 we

specify the used volume, give it a name and specify the exact

details of the underlying storage system. The secretName

must be the name of the previously created Secret.

Kubernetes Storage Class

To understand the Static or Dynamic provisioning, first we

have to understand the Kubernetes Storage Class.

With StorageClass, administrators can offer Profiles or

“classes” regarding the available storage. Different classes

might map to quality-of-service levels, or backup policies or

arbitrary policies determined by the cluster administrators.

For example, you could have a profile to store data on an

HDD named slow-storage or a profile to store data on an SSD

named fast-storage. The kind of storage is determined by

the Provisioner. For Azure, there are two kinds of provisioners:

AzureFile and AzureDisk (the difference is that AzureFile

can be used with ReadWriteMany access mode, while

AzureDisk supports only ReadWriteOnce access, which can

be a disadvantage when you want to use multiple pods

simultaneously). You can learn more about the different types

of StorageClasses here.

https://kubernetes.io/docs/concepts/storage/storage-classes/

32Stupid Simple Kubernetes

The script for our StorageClass:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azurefilestorage
provisioner: kubernetes.io/azure-file
parameters:
 storageAccount: storageaccountname
reclaimPolicy: Retain
allowVolumeExpansion: true

Kubernetes predefines the value for the provisioner property

(see Kubernetes Storage Classes). The Retain reclaim policy

means that after we delete the PVC and PV, the actual

storage medium is NOT purged. We can set it to Delete and

with this setting, as soon as a PVC is deleted, it also triggers
the removal of the corresponding PV along with the actual

storage medium (here the actual storage is the Azure File

Storage).

Persistent Volume and Persistent Volume Claim

Kubernetes has a matching primitive for each of the traditional

storage operational activities (provisioning/configuring/

attaching). Persistent Volume is Provisioning, Storage Class is

Configuring and Persistent Volume Claim is Attaching.

From the original documentation:

A PersistentVolume (PV) is a piece of storage in the cluster

that has been provisioned by an administrator or dynamically

https://kubernetes.io/docs/concepts/storage/storage-classes/

33Stupid Simple Kubernetes

provisioned using Storage Classes.

A PersistentVolumeClaim (PVC) is a request for storage by a

user. It is similar to a Pod. Pods consume node resources and

PVCs consume PV resources. Pods can request specific levels

of resources (CPU and memory). Claims can request specific

size and access modes (e.g., they can be mounted once read/

write or many times read-only).

This means that the Admin will create the Persistent Volume

to specify the type of storage that can be used by the Pods,

the size of the storage, and the access mode. The Developer

will create a Persistent Volume Claim asking for a piece of

volume, access permission and the type of storage. This way

there is a clear separation between “Dev” and “Ops.” Devs

are responsible for asking for the necessary volume (PVC)

and Ops are responsible for preparing and provisioning the

requested volume (PV).

The difference between Static and Dynamic provisioning is

that if there isn’t a PersistentVolume and a Secret created

manually by the Admin, Kubernetes will try to automatically

create these resources.

Dynamic Provisioning

In this case, there is NO PersistentVolume and Secret created

manually, so Kubernetes will try to generate them. The

StorageClass is mandatory and we will use the one created

earlier.

The script for the PersistentVolumeClaim can be found below:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: persistent-volume-claim-mongo
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: azurefilestorage

https://kubernetes.io/docs/concepts/storage/storage-classes/

34Stupid Simple Kubernetes

And our updated Deployment script:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: user-db-deployment
spec:
 selector:
 matchLabels:
 app: user-db-app
 replicas: 1
 template:
 metadata:
 labels:
 app: user-db-app
 spec:
 containers:
 - name: mongo
 image: mongo:3.6.4
 command:
 - mongod
 - “--bind_ip_all”
 - “--directoryperdb”
 ports:
 - containerPort: 27017
 volumeMounts:
 - name: data
 mountPath: /data/db
 resources:
 limits:
 memory: “256Mi”
 cpu: “500m”
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: persistent-volume-claim-mongo

As you can see, in line 34 we referenced the previously created

PVC by name. In this case, we didn’t create a PersistenVolume

or a Secret for it, so it will be created automatically.

The most important advantage of this approach is that you

don’t have to create the PV and the Secret manually and the

Deployment is cloud agnostic. The underlying detail of the

storage is not present in the Pod’s specs. But there are also

some disadvantages: you cannot configure the Storage

Account or the File Share because they are auto-generated

and you cannot reuse the PV or the Secret — they will be

regenerated for each new Claim.

Dynamic Provisioning

The only difference between Static and Dynamic provisioning

is that we manually create the PersistentVolume and the

Secret in Static Provisioning. This way we have full control over

the resource that will be created in our cluster.

35Stupid Simple Kubernetes

The PersistentVolume script is below:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: static-persistent-volume-mongo
 labels:
 storage: azurefile
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 storageClassName: azurefilestorage
 azureFile:
 secretName: static-persistence-secret
 shareName: user-mongo-db
 readOnly: false

It is important that in line 12 we reference the StorageClass by

name. Also, in line 14 we reference the Secret, which is used to

access the underlying storage system.

I recommend this solution, even if it requires more work,

because it is cloud-agnostic. It also lets you apply separation

of concerns regarding roles (Cluster Administrator vs.

Developers) and gives you control of naming and resource

creation.

Conclusion

In this tutorial, we learned how to persist data and state

using Volumes. We presented three different ways of setting

up your system, Direct Access, Dynamic Provisioning and

Static Provisioning and discussed the advantages and

disadvantages of each.

In chapter 5, we will talk about CI/CD pipelines to automate

the deployment of Microservices.

Device Plugins
Explained

Chapter 4

37Stupid Simple Kubernetes

As discussed in Chapter 1, Nodes are worker machines in Ku-

bernetes. They can be any device that has CPU and RAM, and

can be a physical machine or a virtual machine. In other words,

a node is an abstraction over a single device.

Modern server, storage or networking devices (available as

either physical or virtual resources) may have access to a

rich set of hardware resources. These can range from hard-

ware accelerators (such as GPUs or SmartNICs) to non-vol-

atile memory resources, to name a few. For example, AI and

ML workloads often benefit from GPU accelerators being avail-

able to the workload. Kubernetes enables the creation of clus-

ters with a variety of different types of work nodes, including

instruction set architectures (ISAs) such as x86_64 and others.

Hardware architecture (processors, graphics, storage, net-

works, etc.) remains as relevant as ever in cloud-native envi-

ronments. Customers’ performance requirements still need to

be addressed and in many instances (for example AI and ML),

hardware accelerators will play a key role.

Now, how does a Kubernetes cluster become ‘aware’ of the

different hardware capabilities at its disposal (beyond CPU

and memory)? And how do we ensure that these resources

are made available to those workloads that can benefit from

it? The answer is: Kubernetes Device Plugins.

Kubernetes Device Plugins provide vendors with a mechanism

to announce their resources (for example GPU) to Kubelet

and monitor them without additional Kubernetes core code

changes. For users, it provides consistency when it comes to

the consumption of hardware resources.

“As a refresher, Kubelet is an agent that runs on each node of

the cluster. It makes sure that containers are running in a pod”.

Device Plugins Overview Diagram

Kubernetes Device Plugins

http://github.com/Kubernetes/design-proposal-archive

38Stupid Simple Kubernetes

Once the device plugin is registered with the Kubernetes clus-

ter, it sends Kubelet the list of devices that it manages. Kubelet,

in turn, advertises the availability of these resources. Users

then request devices as part of a pod specification.

Intel® is an industry leader in the design, manufacture and sale

of Silicon-based hardware and software solutions. While most

of us immediately associate Intel with processors (CPUs), the

company provides a large ecosystem of hardware technolo-

gies that are key to today’s digital life. These include (but are

not limited to) processors as Intel® Xeon™ scalable processors,

memory, GPUs, crypto accelerators, secure enclaves and FP-

GAs to name a few.

To enable optimized consumption of Intel’s hardware tech-

nologies in cloud-native environments, Intel provides several

device plugins. These are usually made available in the form

of Kubernetes Operators (collecting several device plugins to-

gether) or drivers (in the case of storage. Like the roots in a

tree, Intel’s work is often not ‘visible’, but the ‘tree’ (in this case,

the cloud-native ecosystem) cannot function without it.

Device Plugins Example – Intel®

Intel’s Device Plugins Operator provides a collection of device

plugins advertising Intel-specific hardware resources to the

kubelet. The operator provides unified implementation for:

• Data streaming accelerator (DSA) device plugin.

• Dynamic Load Balancer (DLB) device plugin.

Intel® Device Plugins Operator

Positioning of Intel and SUSE cloud-native
components enabling the rest of the ecosystem.

For illustration purposes, we will introduce Intel’s Device Plugin

Operator and the Intel Operator for Permanent Memory (PMEM)

via CSI driver.

https://github.com/intel/intel-device-plugins-for-kubernetes

39Stupid Simple Kubernetes

• FPGA device plugin for Intel® Arria® and Stratix® 10 devices.

• GPU device plugin to access discrete (Intel® Iris® Xe MAX)

and integrated GPU hardware device files.

• Intel® Analytics accelerator (IAA) device plugin.

• Intel® Quick Assist Technology (Intel QAT) device plugin

(cryptography acceleration and compression capabilities).

• Intel® Software Guard Extensions (Intel SGX) device plugin.

Instructions and tests on how to install the Intel Device Plugins

Operator can be found at: https://github.com/intel/intel-de-

vice-plugins-for-kubernetes/blob/main/cmd/operator/READ-

ME.md

Intel PMEM-CSI is a container storage interface (CSI) driver for

container orchestrators like Kubernetes. It enables local per-

sistent memory (PMEM – for example Intel® Optane™) avail-

able as a filesystem volume to container-based applications.

PMEM is a project under active development. For up-to-date

information on feature status and how to install (including a

demo), visit: https://intel.github.io/pmem-csi/latest/README.html

Intel® Operator for PMEM-CSI driver

https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/operator/README.md
https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/operator/README.md
https://github.com/intel/intel-device-plugins-for-kubernetes/blob/main/cmd/operator/README.md
https://intel.github.io/pmem-csi/latest/README.html

Create an
Azure Infrastructure
for Microservices

Chapter 5

41Stupid Simple Kubernetes

In the first chapter, we learned about the basic concepts used

in Kubernetes and its hardware structure. We talked about the

different software components, including Pods, Deployments,

StatefulSets and Services and how to communicate between

services and with the outside world.

In this chapter, we’re getting practical. We will create all the

necessary configuration files to deploy multiple microservices

in different languages using MongoDB as data storage. We

will also learn about Azure Kubernetes Service (AKS) and will

present the infrastructure used to deploy our services.

The code used in this chapter can be found in my

StupidSimpleKubernetes-AKS git repository. If you like it,

please leave a star!

NOTE: the scripts provided are platform agnostic, so you

can follow the tutorial using other types of cloud providers

or a local cluster with K3s. I suggest using K3s because it is

very lightweight, packed in a single binary with a size less

than 40MB. Furthermore, it is a highly available, certified

Kubernetes distribution designed for production workloads in

resource-constrained environments. For more information,

you can take a look over its well-written and easy-to-follow

documentation.

http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
https://k3s.io/
https://rancher.com/docs/k3s/latest/en/

42Stupid Simple Kubernetes

Requirements
Before starting this tutorial, please make sure that you have

installed Docker and Azure CLI. Kubectl will be installed with

Docker (if not, please install it from here).

You will also need an Azure Account. Azure offers a 30-day

free trial that gives you $200 in credit, which will be more than

enough for our tutorial.

Through this tutorial, we will use Visual Studio Code, but this is

not mandatory.

https://docs.docker.com/get-docker/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl-on-windows
https://azure.microsoft.com/en-us/free/search/?&ef_id=Cj0KCQjww_f2BRC-ARIsAP3zarGseFIIABDKpjhQDML2qAg1qF8p3BdfWCfE403EPHJ3dz-pTIXX_vYaAugfEALw_wcB:G:s&OCID=AID2000602_SEM_Cj0KCQjww_f2BRC-ARIsAP3zarGseFIIABDKpjhQDML2qAg1qF8p3BdfWCfE403EPHJ3dz-pTIXX_vYaAugfEALw_wcB:G:s&dclid=CjgKEAjww_f2BRCcv_LMmqjmsloSJABCWkiPJs5LFfh1HF3_LoyEAXfixk_-gt65qWO68aF4tKn4cfD_BwE
https://code.visualstudio.com/

43Stupid Simple Kubernetes

Creating a
Production Ready
Azure Infrastructure for
Microservices

To have a fast setup, I’ve created an ARM Template, which will

automatically spin up all the Azure resources needed for this

tutorial. You can read more about ARM Templates here.

We will run all the scripts in the VS Code Terminal.

The first step is to log in to your Azure account from the VS

Code Terminal. For this run az login. This will open a new tab

in your default browser, where you can enter your credentials.

For the Azure Kubernetes Service, we need to set up a Service

Principal. For this, I’ve created a PowerShell script called

create-service-principal.ps1. Just run this script in the VS Code

Terminal or PowerShell.

After running the code, it will return a JSON response with the

following structure:

Based on this information, you will have to update the ARM

Template to use your Service Principal. For this, please copy

the appId from the returned JSON to the clientId in the ARM

Template. Also, copy the password and paste it into the ARM

Template’s secret field.

In the next step, you should create a new Resource Group

called “StupidSimpleKubernetes” in your Azure Portal and

import the ARM template to it.

https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/tree/master/manifest/arm-templates
https://www.red-gate.com/simple-talk/cloud/infrastructure-as-a-service/azure-resource-manager-arm-templates/#:~:text=ARM%20Templates%20are%20a%20way,Azure%20%E2%80%9CInfrastructure%20as%20code%E2%80%9D.
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/
https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/tree/master/manifest/azure-scripts

44Stupid Simple Kubernetes

To import the ARM template, in the Azure Portal, click on the

Create a resource button, search for Template Deployment

and select Build your own template in the editor. Copy and

paste the template code from our Git repository to the Azure

template editor. Now you should see something like in the

following picture:

Hit the save button, select the StupidSimpleKubernetes resource

group, and hit Purchase. This will take a while and it will create

all the necessary Azure resources for a production-ready

microservices infrastructure.

https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/tree/master/manifest/arm-templates

45Stupid Simple Kubernetes

az deployment group create --name testtemplate --re-
source-group StupidSimpleKubernetes --template-file .\mani-
fest\arm-templates\template.json

You can also apply the ARM Template using the Azure CLI, by running the following command in the root folder of our git repository:

After the ARM Template Deployment is done, we should have the following Azure resources:

46Stupid Simple Kubernetes

The next step is to authorize our Kubernetes service to pull images from the Container Registry. For this, select the container registry,

select the Access Control (IAM) menu option from the left menu, click on the Add button and select Role Assignment.

In the right menu, search for the correct Service Principal (use the Z from the returned JSON object — see the Service Principal image

above).

After this step, our Kubernetes Service will be able to pull the right Docker images from the Azure Container Registry. We will store all

our custom Docker images in this Azure Container Registry.

We are almost ready! In the last step, we will set up the NGNIX Ingress Controller and add a RecordSet to our DNS. This assigns a hu-

man-readable hostname to our services instead of using the IP:PORT of the Load Balancer.

47Stupid Simple Kubernetes

kubectl apply -f .\manifest\ingress-controller\nginx-in-
gress-controller-deployment.yml
kubectl apply -f .\manifest\ingress-controller\ng-
nix-load-balancer-setup.yml

This will create a new public IP, which you can see in the Azure Portal:

To set up the NGINX Ingress Controller, run the following two commands in the root folder of the repository, one by one:

48Stupid Simple Kubernetes

If we take a look over the details of this new Public IP resource, we can see that it does NOT have a DNS name.

49Stupid Simple Kubernetes

To assign a human-readable DNS name to this Public IP, please

run the following PowerShell script (just replace the IP address

with the correct IP address from your Public IP resource):

This assigns a DNS name to the public IP of your NGINX Ingress

Controller.

Now we are ready to deploy our Microservices to the Azure

Kubernetes Cluster.

In this tutorial, we learned how to create a production-ready

Azure infrastructure to deploy our microservices. We used an

ARM Template to automatically set up the Azure Kubernetes

Service, the Azure Container Registry, the Azure Load Balancer,

Azure File Storage (which will be used for persistent data storage)

and to add a DNS Zone. We applied some configuration files

to authorize Kubernetes to pull Docker images from the Azure

Container Registry, configure the NGINX Ingress Controller and

set up a DNS Hostname for our Ingress Controller.

Conclusion

Chapter 6

Stupid Simple
Scalability

51Stupid Simple Kubernetes

To understand the different concepts in software scalability,

let’s take a real-life example.

Suppose you’ve just opened a coffee shop, you bought a

simple coffee machine, which can make three coffees per

minute, and you hired an employee who serves the clients.

At first, you have a few clients: everything is going well, and

all the people are happy about the coffee and the service

because they don’t have to wait too long to get their delicious

coffee. As time goes by, your coffee shop becomes famous in

town, and more and more people are buying their coffee from

you. But there is a problem. You have only one employee and

too many clients, so the waiting time gets considerably higher

and people are starting to complain about your service. The

coffee machine could make three coffees per minute, but the

This post will define and explain software scalability in

Kubernetes and look at different scalability types. Then we

will present three autoscaling methods in Kubernetes: HPA

(Horizontal Pod Autoscaler), VPA (Vertical Pod Autoscaler), and

CA (Cluster Autoscaler).

Scalability Explained

employee can handle only one client per minute. You decide to

hire two more employees. With this, you’ve solved the problem

for a while.

After some time, near the coffee shop, the city opens a fun

park, so more and more tourists are coming and drinking

their coffee in your famous coffee shop. So you decide to hire

more people, but even with more employees, the waiting time

is almost the same. The problem is that your coffee machine

can make three coffees per minute, so now your employees

are waiting for the coffee machine. The solution is to buy a new

coffee machine. Another problem is that the clients tend to

buy coffee from employees that they already know. As a result,

some employees have a lot of work, and others are idle. This

is when you decide you need to hire another employee who

will greet the clients and redirect them to the employee who is

free or has fewer orders to prepare.

Analyzing your income and expenses, you realize that you

have many more clients during the summer than in the winter,

so you decide to hire seasonal workers. Now you have three

employees working full-time and the other employees are

working for you only during the summer. This way, you can

increase your income and decrease expenses. Furthermore,

you can rent some coffee machines during the summer and

give them back during the winter to minimize the costs. This

52Stupid Simple Kubernetes

way, you won’t have idle coffee machines.

To translate this short story to software scalability in

Kubernetes, we can replace the coffee machines with nodes,

the employees with pods, the coffee shop is the cluster, and

the employee who greets the clients and redirects them is the

load balancer. Adding more employees means Horizontal Pod

Scaling; adding more coffee machines means Cluster Scaling.

Seasonal workers and renting coffee machines only for the

summer season means Autoscaling because when the load

is higher, we have more pods to serve the clients and more

nodes to be used by pods. When the load drops (during the

winter), we have fewer expenses. In this analogy, Vertical Pod

Scaling would be hiring a more experienced employee who

can serve more clients in the same amount of time (high

performing employee). The trigger for the Autoscaling would

be the season; we scale up during the summer and scale

down during the winter.

53Stupid Simple Kubernetes

Horizontal scaling or scaling out means that the number of

running pods dynamically increases or decreases as your

application usage changes. To know exactly when to increase

or decrease the number of replicas, Kubernetes uses triggers

based on the observed metrics (average CPU utilization,

average memory utilization, or custom metrics defined by

the user). HPA, a Kubernetes resource, runs in a loop (the loop

desiredReplicas = ceil[currentReplicas*(currentMet-

ricValue/desiredMetricValue)]

To understand this formula, let’s take the

following configuration:

duration can be configured, by default, it is set to 15 seconds)

and fetches the resource metrics from the resource metrics

API for each pod. Using these metrics, it calculates the actual

resource utilization values based on the mean values of all the

pods and compares them to the metrics defined in the HPA

definition. To calculate the desired number of replicas, HPA

uses the following formula:

Horizontal Pod
Autoscaling (HPA)

spec:

 containers:

 - name: php-apache

 image: k8s.gcr.io/hpa-example

 ports:

 - containerPort: 80

 resources:

 limits:

 cpu: 500m

 requests:

 cpu: 200m

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/

54Stupid Simple Kubernetes

The unit suffix m stands for “thousandth of a core,” so this

resources object specifies that the container process needs

200/1000 of a core (20%) and is allowed to use, at most,

500/1000 of a core (50 percent).

With the following command, we can create an HPA that

maintains between 1 and 10 replicas. It will increase or decrease

the number of replicas to maintain an average CPU usage of

50 percent, or in this concrete example, 100 milli-cores.

kubectl autoscale deployment deployment_name

--cpu-percent=50 --min=1 --max=10

Suppose that the CPU usage has increased to 210 percent; this

means that we will have nrReplicas = ceil[1 * (210 / 50)] =

ceil[4.2] = 5 replicas.

Now the CPU usage drops to 25 percent when having 5 replicas,

so the HPA will decrease the number of replicas to nrReplicas

= ceil[5 * (25 / 50)] = ceil[2.5] = 3 replicas.

For more examples, read Autoscaling in Kubernetes using

HPA and VPA or HPA Walkthrough.

When configuring HPA, make sure that:

1. All pods have resource requests and limits configured -

this will be taken into consideration when HPA takes

scaling decisions

2. Use custom metrics or observed metrics - external

metrics can be a security risk because they can provide

access to a large number of metrics

3. Use HPA together with CA whenever possible

https://www.velotio.com/engineering-blog/autoscaling-in-kubernetes-using-hpa-vpa
https://www.velotio.com/engineering-blog/autoscaling-in-kubernetes-using-hpa-vpa

55Stupid Simple Kubernetes

VPA recommends optimized CPU and memory requests/

limits values (and automatically updates them for you so that

the cluster resources are efficiently used). VPA won’t add more

replicas of a Pod, but it increases the memory or CPU lim-

its. This is useful when adding more replicas won’t help your

solution. For example, sometimes you can’t scale a database

(read Chapter Three, Persistent Volumes Explained) just by

adding more Pods. Still, you can make the database handle

more connections by increasing the memory or CPU. You can

use the VPA when your application serves heavyweight re-

quests, which requires higher resources.

HPA can be useful when, for example, your application serves

a large number of lightweight (i.e., low resource-consuming)

requests. In that case, scaling the number of replicas can

distribute the workload on each pod. The VPA, on the other

hand, can be useful when your application serves heavyweight

requests, which require higher resources.

HPA and VPA are incompatible. Do not use both together for

the same set of pods. HPA uses the resource request and limits

to trigger scaling, and in the meantime, VPA modifies those

limits, so it will be a mess unless you configure the HPA to use

either custom or external metrics. Read more about VPA and

HPA here.

Vertical Pod
Autoscaling (VPA)

https://www.velotio.com/engineering-blog/autoscaling-in-kubernetes-using-hpa-vpa

56Stupid Simple Kubernetes

While HPA scales the number of Pods, the CA changes the

number of nodes. When your cluster runs low on resources,

the CA provision a new computation unit (physical or virtual

machine) and adds it to the cluster. If there are too many

empty nodes, the CA will remove them to reduce costs.

Learn more about Cluster Autoscaling in Architecting

Kubernetes Clusters—Choosing the Best Autoscaling Strategy.

In the first part of this chapter, we provided a real-life example

to explain the different concepts used in software scalability.

Then we defined and presented the three scalability methods

provided by Kubernetes, HPA (Horizontal Pod Autoscaler), VPA

(Vertical Pod Autoscaler), and CA (Cluster Autoscaler).

Cluster Autoscaling (CA) Conclusion

https://learnk8s.io/kubernetes-autoscaling-strategies
https://learnk8s.io/kubernetes-autoscaling-strategies

Stupid Simple
Service Mesh -
What, When, Why

Chapter 7

58Stupid Simple Kubernetes

Recently microservices-based applications became very

popular and with the rise of microservices, the concept of

Service Mesh also became a very hot topic. Unfortunately,

there are only a few articles about this concept and most of

them are hard to digest.

In this section, we will try to demystify the concept of Service

Mesh using “Stupid Simple” explanations, diagrams, and

examples to make this concept more transparent and

accessible for everyone. In the first chapter, we will talk about

the basic building blocks of a Service Mesh and we will

implement a sample application to have a practical example

of each theoretical concept. In the next chapter, based on

this sample app, we will touch more advanced topics, like

Service Mesh in Kubernetes, and we will talk about some more

advanced Service Mesh implementations like Istio, Linkerd,

etc.

To understand the concept of Service Mesh, the first step is to

understand what problems it solves and how it solves them.

Software architecture has evolved a lot in a short time, from

a classical monolithic architecture to microservices. Although

many praise the microservice architecture as the holy grail of

software development, it introduces some serious challenges.

Overview of the sample application

For one, a microservices-based architecture means that

we have a distributed system. Every distributed system

has challenges such as transparency, security, scalability,

troubleshooting, and identifying the root cause of issues. In

a monolithic system, we can find the root cause of a failure

by tracing. But in a microservice-based system, each service

can be written in different languages, so tracing is no trivial

task. Another challenge is service-to-service communication.

Instead of focusing on business logic, developers need to take

care of service discovery, handle connection errors, detect

latency, retry logic, etc. Applying SOLID principles on the

architecture level means that these kinds of network problems
should be abstracted away and not mixed with the business

logic. This is why we need Service Mesh.

Istio
https://linkerd.io/
https://en.wikipedia.org/wiki/Service_mesh
https://medium.com/backticks-tildes/the-s-o-l-i-d-principles-in-pictures-b34ce2f1e898

59Stupid Simple Kubernetes

Ingress Controller vs.
API Gateway vs. Service
Mesh
As I mentioned above, we need to apply SOLID principles on an

architectural level. For this, it is important to set the boundaries

between Ingress Controller, API Gateway, and Service Mesh

and understand each one’s role and responsibility.

On a stupid simple and oversimplified level, these are the

responsibilities of each concept:

1. Ingress Controller: allows a single IP port to access all services

from the cluster, so its main responsibilities are path mapping,

routing and simple load balancing, like a reverse proxy

2. API Gateway: aggregates and abstracts away APIs; other

responsibilities are rate-limiting, authentication, and

security, tracing, etc. In a microservices-based application,

you need a way to distribute the requests to different services,

gather the responses from multiple/all microservices, and

then prepare the final response to be sent to the caller.

This is what an API Gateway is meant to do. It is responsible

for client-to-service communication, north-south traffic.

3. Service Mesh: responsible for service-to-service

communication, east-west traffic. We’ll dig more into the

concept of Service Mesh in the next section.

https://medium.com/backticks-tildes/the-s-o-l-i-d-principles-in-pictures-b34ce2f1e898
https://www.nginx.com/resources/glossary/kubernetes-ingress-controller/
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://en.wikipedia.org/wiki/North-south_traffic
https://www.nginx.com/blog/what-is-a-service-mesh/
https://en.wikipedia.org/wiki/East-west_traffic

60Stupid Simple Kubernetes

Service Mesh and API Gateway have overlapping functionalities,

such as rate limiting, security, service discovery, tracing, etc.

but they work on different levels and solve different problems.

Service Mesh is responsible for the flow of requests between

services. API Gateway is responsible for the flow of requests

between the client and the services, aggregating multiple

services and creating and sending the final response to the

client.

The main responsibility of an API gateway is to accept traffic

from outside your network and distribute it internally, while the

main responsibility of a service mesh is to route and manage

traffic within your network. They are complementary concepts

and a well-defined microservices-based system should

combine them to ensure application uptime and resiliency

while ensuring that your applications are easily consumable.

What does a Service
Mesh Solve?

As an oversimplified and stupid simple definition, a Service

Mesh is an abstraction layer hiding away and separating

networking-related logic from business logic. This way

developers can focus only on implementing business logic. We

implement this abstraction using a proxy, which sits in the front

of the service. It takes care of all the network-related problems.

This allows the service to focus on what is really important:

61Stupid Simple Kubernetes

the business logic. In a microservice-based architecture, we

have multiple services and each service has a proxy. Together,

these proxies are called Service Mesh.

As best practices suggest, proxy and service should be

in separate containers, so each container has a single

responsibility. In the world of Kubernetes, the container of

the proxy is implemented as a sidecar. This means that each

service has a sidecar containing the proxy. A single Pod will

contain two containers: the service and the sidecar. Another

implementation is to use one proxy for multiple pods. In this

case, the proxy can be implemented as a Deamonset. The

most common solution is using sidecars. Personally, I prefer

sidecars over Deamonsets, because they keep the logic of the

proxy as simple as possible.

There are multiple Service Mesh solutions, including Istio,

Linkerd, Consul, Kong, and Cilium. Let’s focus on the basics

and understand the concept of Service Mesh, starting with

Envoy. This is a high-performance proxy and not a complete

framework or solution for Service Meshes (in this tutorial, we

will build our own Service Mesh solution). Some of the Service

Mesh solutions use Envoy in the background (like Istio), so

before starting with these higher-level solutions, it’s a good

idea to understand the low-level functioning.

Understanding Envoy

Ingress and Egress

Simple definitions:

• Any traffic sent to the server (service) is called ingress.

• Any traffic sent from the server (service) is called egress.

The Ingress and the Egress rules should be added to the

configuration of the Envoy proxy, so the sidecar will take care

of these. This means that any traffic to the service will first go

to the Envoy sidecar. Then the Envoy proxy redirects the traffic

to the real service. Vice-versa, any traffic from this service will

go to the Envoy proxy first and Envoy resolves the destination

service using Service Discovery. By intercepting the inbound

and outbound traffic, Envoy can implement service discovery,

circuit breaker, rate limiting, etc.

https://www.magalix.com/blog/the-sidecar-pattern
https://istio.io/
https://linkerd.io/
https://www.consul.io/
https://konghq.com/kong-mesh/
https://cilium.io/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy#
https://avinetworks.com/glossary/service-discovery/#:~:text=Microservices%20service%20discovery%20is%20a,microservices%20architecture%20discovery%20includes%20both%3A&text=a%20central%20server%20(or%20servers,a%20global%20view%20of%20addresses.

62Stupid Simple Kubernetes

The Structure of an Envoy Proxy Configuration File Every Envoy configuration file has the following components:

1. Listeners: where we configure the IP and the Portnumber

that the Envoy proxy listens to

2. Routes: the received request will be routed to a cluster

based on rules. For example, we can have path matching

rules and prefix rewrite rules to select the service that

should handle a request for a specific path/subdomain.

Actually, the route is just another type of filter, which is

mandatory. Otherwise, the proxy doesn’t know where to

route our request.

3. Filters: Filters can be chained and are used to enforce

different rules, such as rate-limiting, route mutation,

manipulation of the requests, etc.

4. Clusters: act as a manager for a group of logically

similar services (the cluster has similar responsibility as

a service in Kubernetes; it defines the way a service can

be accessed), and acts as a load balancer between the

services.

5. Service/Host: the concrete service that handles and

responds to the request

63Stupid Simple Kubernetes

Here is an example of an Envoy configuration file:

admin:
 access_log_path: “/tmp/admin_access.log”
 address:
 socket_address:
 address: “127.0.0.1”
 port_value: 9901
static_resources:
 listeners:
 -
 name: “http_listener”
 address:
 socket_address:
 address: “0.0.0.0”
 port_value: 80
 filter_chains:
 filters:
 -
 name: “envoy.http_connection_manager”
 config:
 stat_prefix: “ingress”
 codec_type: “AUTO”
 generate_request_id: true
 route_config:
 name: “local_route”
 virtual_hosts:
 -
 name: “http-route”
 domains:
 - “*”
 routes:
 -
 match:
 prefix: “/nestjs”
 route:
 prefix_rewrite: “/”
 cluster: “nestjs”
 -
 match:
 prefix: “/nodejs”
 route:
 prefix_rewrite: “/”
 cluster: “nodejs”
 -

 match:
 path: “/”
 route:
 cluster: “base”
 http_filters:
 -
 name: “envoy.router”
 config: {}

 clusters:
 -
 name: “base”
 connect_timeout: “0.25s”
 type: “strict_dns”
 lb_policy: “ROUND_ROBIN”
 hosts:
 -
 socket_address:
 address: “service_1_envoy”
 port_value: 8786
 -
 socket_address:
 address: “service_2_envoy”
 port_value: 8789
 -
 name: “nodejs”
 connect_timeout: “0.25s”
 type: “strict_dns”
 lb_policy: “ROUND_ROBIN”
 hosts:
 -
 socket_address:
 address: “service_4_envoy”
 port_value: 8792
 -
 name: “nestjs”
 connect_timeout: “0.25s”
 type: “strict_dns”
 lb_policy: “ROUND_ROBIN”
 hosts:
 -
 socket_address:
 address: “service_5_envoy”
 port_value: 8793

64Stupid Simple Kubernetes

The configuration file above translates into the

following diagram:

This diagram did not include all configuration files for all the

services, but it is enough to understand the basics. You can

find this code in my Stupid Simple Service Mesh repository.

As you can see, between lines 10-15 we defined the Listener for

our Envoy proxy. Because we are working in Docker, the host is

0.0.0.0.

After configuring the listener, between lines 15-52 we define

the Filters. For simplicity we used only the basic filters, to

match the routes and to rewrite the target routes. In this case,

if the subdomain is “host:port/nodeJs,” the router will choose

the nodejs cluster and the URL will be rewritten to “host:port/”

(this way the request for the concrete service won’t contain

the /nodesJs part). The logic is the same also in the case

of “host:port/nestJs”. If we don’t have a subdomain in the

request, then the request will be routed to the cluster called

base without prefix rewrite filter.

Between lines 53-89 we defined the clusters. The base cluster

will have two services and the chosen load balancing strategy

is round-robin. Other available strategies can be found here.

The other two clusters (nodejs and nestjs) are simple, with only

a single service.

The complete code for this tutorial can be found in my Stupid

Simple Service Mesh git repository.

https://github.com/CzakoZoltan08/Stupid-Simple-Service-Mesh
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://github.com/CzakoZoltan08/Stupid-Simple-Service-Mesh
https://github.com/CzakoZoltan08/Stupid-Simple-Service-Mesh

65Stupid Simple Kubernetes

Conclusion
In this chapter, we learned about the basic concepts of Service Mesh. In the first part, we understood the responsibilities and

differences between the Ingress Controller, API Gateway, and Service Mesh. Then we talked about what Service Mesh is and what

problems it solves. In the second part, we introduced Envoy, a performant and popular proxy, which we used to build our Service

Mesh example. We learned about the different parts of the Envoy configuration files and created a Service Mesh with five example

services and a front-facing edge proxy.

In the next chapter, we will look at how to use Service Mesh with Kubernetes and will create an example project that can be used as

a starting point in any project using microservices.

https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy#

Chapter 8

Stupid Simple
Service Mesh
in Kubernetes

67Stupid Simple Kubernetes

We covered the what, when and why of Service Mesh in an

earlier chapter. Now I’d like to talk about why they are critical

in Kubernetes.

To understand the importance of using service meshes when

working with microservices-based applications, let’s start with

a story.

Suppose that you are working on a big microservices-based

banking application, where any mistake can have serious

impacts. One day the development team receives a feature

request to add a rating functionality to the application. The

solution is obvious: create a new microservice that can handle

user ratings. Now comes the hard part. The team must come

up with a reasonable time estimate to add this new service.

The team estimates that the rating system can be finished in 4

sprints. The manager is angry. He cannot understand why it is

so hard to add a simple rating functionality to the app.

To understand the estimate, let’s understand what we need

to do in order to have a functional rating microservice. The

CRUD (Create, Read, Update, Delete) part is easy -- just simple

coding. But adding this new project to our microservices-based

application is not trivial. First, we have to implement

authentication and authorization, then we need some kind of

tracing to understand what is happening in our application.

Because the network is not reliable (unstable connections can

result in data loss), we have to think about solutions for retries,

circuit breakers, timeouts, etc.

We also need to think about deployment strategies. Maybe we

want to use shadow deployments to test our code in production

without impacting the users. Maybe we want to add A/B testing

capabilities or canary deployments. So even if we create just a

simple microservice, there are lots of cross-cutting concerns

that we have to keep in mind.

Sometimes it is much easier to add a new functionality to an

existing service, than create a new service and add it to our

infrastructure. It can take a lot of time to deploy a new service,

to add authentication and authorization, to configure tracing,

to create CI/CD pipelines, to implement retry mechanisms

and more. But adding the new feature to an existing service

will make the service too big. It will also break the rule of single

responsibility, and like many existing microservices projects, it

Stupid Simple Service
Mesh in Kubernetes

68Stupid Simple Kubernetes

will be transformed into a set of connected macroservices or

monoliths.

We call this the cross-cutting concerns burden — the fact that

in each microservice you must reimplement the cross-cutting

concerns, such as authentication, authorization, retry

mechanisms and rate limiting.

What is the solution for this burden? Is there a way to

implement all these concerns once and inject them into

every microservice, so the development team can focus on

producing business value? The answer is Istio.

Set Up a Service Mesh in Kubernetes using Istio

Istio solves these issues using sidecars, which it automatically

injects into your pods. Your services won’t communicate directly

with each other — they’ll communicate through sidecars. The

sidecars will handle all the cross-cutting concerns. You define

the rules once, and these rules will be injected automatically

into all of your pods.

https://istio.io/latest/

69Stupid Simple Kubernetes

Samples Application

Let’s put this idea into practice. We’ll build a sample application

to explain the basic functionalities and structure of Istio.

In the previous chapter, we created a service mesh by

hand, using envoy proxies. In this tutorial, we will use the

same services, but we will configure our Service Mesh

using Istio and Kubernetes.

The image below depicts that application architecture.

70Stupid Simple Kubernetes

Requirements

To work along with this tutorial, you will need to install the

following tools:

1. Kubernetes (we used the 1.21.3 version in this tutorial)

2. Helm (we used the v2)

3. Istio (we used 1.1.17) - setup tutorial

4. Minikube, K3s or Kubernetes cluster enabled in Docker

Git Repository

My Stupid Simple Service Mesh in Kubernetes repository

contains all the scripts for this tutorial. Based on these scripts

you can configure any project.

Running our Microservices-Based Project using
Istio and Kubernetes

As I mentioned above, step one is to configure Istio to inject

the sidecars into each of your pods from a namespace. We

will use the default namespace. This can be done using the

following command:

kubectl label namespace default istio-injection=enabled

In the second step, we navigate into the /kubernetes folder from

the downloaded repository, and we apply the configuration

files for our services:

kubectl apply -f service1.yaml
kubectl apply -f service2.yaml
kubectl apply -f service3.yaml

https://kubernetes.io/docs/setup/
https://helm.sh/docs/intro/install/
https://istio.io/latest/news/releases/1.1.x/announcing-1.1.17/
https://istio.io/latest/docs/setup/getting-started/
https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://github.com/CzakoZoltan08/StupidSimpleServiceMeshWithIstioAndKubernetes

71Stupid Simple Kubernetes

After these steps, we will have the green part up and running: For now, we can’t access our services from the browser. In

the next step, we will configure the Istio Ingress and Gateway,

allowing traffic from the exterior.

The gateway configuration is as follows:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: http-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts: - “*”

Using the selector istio: ingressgateway, we specify that we

would like to use the default ingress gateway controller, which

was automatically added when we installed Istio. As you can

see, the gateway allows traffic on port 80, but it doesn’t know

where to route the requests. To define the routes, we need a

so-called VirtualService, which is another custom Kubernetes

resource defined by Istio.

72Stupid Simple Kubernetes

Security in Istio
Without Istio, every microservice must implement

authentication and authorization. Istio removes the

responsibility of adding authentication and authorization

from the main container (so developers can focus on providing

business value) and moves these responsibilities into its

sidecars. The sidecars can be configured to request the access

token at each call, making sure that only authenticated

 requests can reach our services.

apiVersion: authentication.istio.io/v1beta1
kind: Policy
metadata:
 name: auth-policy
spec:
 targets:
 - name: service1
 - name: service2
 - name: service3
 - name: service4
 - name: service5
 origins:
 - jwt:
 issuer: “{YOUR_DOMAIN}”
 jwksUri: “{YOUR_JWT_URI}”
 principalBinding: USE_ORIGIN

The code above shows an example configuration for the

VirtualService. In line 7, we specified that the virtual service

applies to the requests coming from the gateway called

http-gateway and from line 8 we define the rules to match the

services where the requests should be sent. Every request with

/service1 will be routed to the service1 container while every

requests with /service2 will be routed to the service2 container.

At this step, we have a working application. Until now there

is nothing special about Istio — you can get the same

architecture with a simple Kubernetes Ingress controller,

apiVersion: networking.istio.io/v1b
kind: VirtualService
metadata:
 name: sssm-virtual-services
spec:
 hosts: - “*”
 gateways: - http-gateway
 http:
 - match:
 - uri:
 prefix: /service1
 route:
 - destination:
 host: service1
 port:
 number: 80
 - match:
 - uri:
 prefix: /service2
 route:
 - destination:
 host: service2
 port:
 number: 80

without the burden of sidecars and gateway configuration.

Now let’s see what we can do using Istio rules.

73Stupid Simple Kubernetes

Traffic Management
using Destination Rules

Istio’s official documentation says that the

DestinationRule “defines policies that apply to

traffic intended for a service after routing has occurred.”

This means that the DestionationRule resource is situated

somewhere between the Ingress controller and our services.

Using DestinationRules, we can define policies for load

balancing, rate limiting or even outlier detection to detect

unhealthy hosts.

Shadowing

Shadowing, also called Mirroring, is useful when you want

to test your changes in production silently, without affecting

end users. All the requests sent to the main service are mirrored

(a copy of the request) to the secondary service that you want

to test.

Shadowing is easily achieved by defining a destination rule

using subsets and a virtual service defining the mirroring route.

The destination rule will be defined as follows:

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: service2
spec:
 host: service2
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

As we can see above, we defined two subsets for the

two versions.

Now we define the virtual service with mirroring configuration,

like in the script below:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: service2
spec:
 hosts:
 - service2
 http:
 - route:
 - destination:
 host: service2
 subset: v1
 mirror:
 host: service2
 subset: v2

As an identity and access management server, you can

use Auth0, Okta or other OAuth providers. You can learn more

about authentication and authorization using Auth0 with Istio

in this article.

https://istio.io/latest/docs/reference/config/networking/destination-rule/
https://auth0.com/
https://www.okta.com/
https://medium.com/google-cloud/back-to-microservices-with-istio-part-2-authentication-authorization-b079f77358ac

74Stupid Simple Kubernetes

In this virtual service, we defined the main destination route

for service2 version v1. The mirroring service will be the same

service, but with the v2 version tag. This way the end user will

interact with the v1 service, while the request will also be sent

also to the v2 service for testing.

Traffic Splitting

Traffic splitting is a technique used to test your new version of

a service by letting only a small part (a subset) of users to

interact with the new service. This way, if there is a bug in the

new service, only a small subset of end users will be affected.

This can be achieved by modifying our virtual service

as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: service2
spec:
 hosts:
 - service2
 http:
 - route:
 - destination:
 host: service2
 subset: v1
 weight: 90
 - destination:
 host: service2
 subset: v2
 weight: 10

The most important part of the script is the weight tag, which

defines the percentage of the requests that will reach that

specific service instance. In our case, 90 percent of the request

will go to the v1 service, while only 10 percent of the requests will

go to v2 service.

Canary Deployments

In canary deployments, newer versions of services

are incrementally rolled out to users to minimize the risk and

impact of any bugs introduced by the newer version.

This can be achieved by gradually decreasing the weight of

the old version while increasing the weight of the new version.

A/B Testing

This technique is used when we have two or more different

user interfaces and we would like to test which one offers a

better user experience. We deploy all the different versions

and we collect metrics about the user interaction. A/B testing

can be configured using a load balancer based on consistent

hashing or by using subsets.

75Stupid Simple Kubernetes

In the first approach, we define the load balancer like in the

following script:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: service2
spec:
 host: service2
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: version

As you can see, the consistent hashing is based on the version

tag, so this tag must be added to our service called “service2”,

like this (in the repository you will find two files called service2_

v1 and service2_v2 for the two different versions that we use):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: service2-v2
 labels:
 app: service2
spec:
 selector:
 matchLabels:
 app: service2
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: service2
 version: v2
 spec:
 containers:
 - image: zoliczako/sssm-service2:1.0.0
 imagePullPolicy: Always
 name: service2
 ports:
 - containerPort: 5002
 resources:
 limits:
 memory: “256Mi”
 cpu: “500m”

The most important part to notice is the spec -> template ->

metadata -> version: v2. The other service has the version:

v1 tag.

The other solution is based on subsets.

https://istio.io/latest/docs/reference/config/networking/destination-rule/

76Stupid Simple Kubernetes

Retry Management

Using Istio, we can easily define the maximum number of

attempts to connect to a service if the initial attempt fails (for

example, in case of overloaded service or network error).

The retry strategy can be defined by adding the following lines

to the end of our virtual service:

retries:
 attempts: 5
 perTryTimeout: 10s

With this configuration, our service2 will have five retry attempts

in case of failure and it will wait 10 seconds before returning a

timeout.

Learn more about traffic management in this article. You’ll find

a great workshop to configure an end-to-end service mesh

using Istio here.

Conclusion
In this chapter, we learned how to set up and configure a

service mesh in Kubernetes using Istio. First, we configured

an ingress controller and gateway and then we learned

about traffic management using destination rules and

virtual services.

https://medium.com/google-cloud/back-to-microservices-with-istio-p1-827c872daa53
https://www.istioworkshop.io/01-workshop-overview/

Conclusion

Become a
Microservices Master

78Stupid Simple Kubernetes

You’ve made it through our Stupid Simple Kubernetes e-book. Congratulations! You are well on your way to becoming

a microservices master.

There are many more resources available to further your learning Microservices, including the Microservices.io website. Similarly,

there are many Kubernetes resources out there. One of our favorites is The Illustrated Children’s Guide to Kubernetes video.

I strongly encourage you to get hands on and continue your learning. The SUSE & Rancher Community is a great place to start – and

is welcoming to learners at all levels. Whether you are interested in an introductory Kubernetes class or ready to go deeper with a

mutli-week class on K3s, they’ve got it all. Join the free community today!

Keep learning and keep it simple!

Zoltán Czakó

https://microservices.io/
https://www.youtube.com/watch?v=3I9PkvZ80BQ
https://community.suse.com/

79Stupid Simple Kubernetes

Zoltán Czakó is a software developer experienced in backend,

frontend, DevOps, artificial intelligence and machine Learning.

He is the founder of HumindZ, a company focused on making

Artificial Intelligence and Machine Learning accessible for

everyone, providing services to improve everyday life using the

power of AI/ML.

He is also a research assistant at the Technical University of

Cluj-Napoca in Romania, where he is applying his skills to

create a platform that combines No-Code AI with AutoAI. Using

this platform, the research team creates automated solutions

mainly for healthcare, automating the diagnosis of different

diseases, this way helping to improve the lives of thousands

of people.

During his career, Zoltán has worked on multiple

microservices-based projects. He wrote this book to help

others get started with microservices and to make Kubernetes

simple and accessible for everyone.

SUSE is a global leader in innovative, reliable and enterprise-grade open

source solutions, relied upon by more than 60% of the Fortune 500 to power

their mission-critical workloads. We specialize in Business-critical Linux,

Enterprise Container Management and Edge solutions, and collaborate

with partners and communities to empower our customers to innovate

everywhere – from the data center, to the cloud, to the edge and beyond.

SUSE puts the “open” back in open source, giving customers the agility

to tackle innovation challenges today and the freedom to evolve their

strategy and solutions tomorrow. The company employs more than 2,000

people globally. SUSE is listed on the Frankfurt Stock Exchange.

